
Analysis of Three Multilevel Security Architectures
Timothy E. Levin

Naval Postgraduate School
1411 Cunningham Rd.
Monterey, CA, 93943

levin@nps.edu

Cynthia E. Irvine
Naval Postgraduate School

1411 Cunningham Rd.
Monterey, CA, 93943

irvine@nps.edu

Clark Weissman
Northrop Grumman Corp.

One Hornet Way
El Segundo, CA,

clark.weissman@ngc.com

Thuy D. Nguyen
Naval Postgraduate School

1411 Cunningham Rd.
Monterey, CA, 93943
tdnguyen@nps.edu

ABSTRACT
Various system architectures have been proposed for high
assurance enforcement of multilevel security. This paper provides
an analysis of the relative merits of three architectural types – one
based on a security kernel, another based on a traditional
separation kernel, and a third based on a least-privilege separation
kernel. We introduce the Least Privilege architecture, which
incorporates security features from the recent “Separation Kernel
Protection Profile,” and show how it can provide several unique
aspects of security and assurance, although each architecture has
advantages.

Categories and Subject Descriptors
D.4 [Software]: Operating Systems – security and protection. D.2
[Software Engineering]: Software Architectures – Data
abstraction; Domain-specific architectures.

General Terms
Measurement, Performance, Design, Security, Verification.

Keywords
Principle of Least Privilege, Security Kernel, Separation Kernel
Partitioning Kernel, Multilevel Security, Architecture.

1. INTRODUCTION
After years of experimentation with alternate techniques, it is
apparent that the existence of different levels of data sensitivity in
automated environments with heterogeneously trusted users still
calls for multilevel-secure IT systems [32][33]. Various system
architectures have been proposed for high assurance enforcement
of multilevel security. Many of these systems utilize common
kernel constructs such as the security kernel [3] and the
separation kernel.[36] However, we lack metrics or even a
common framework for understanding the relative security
characteristics of the different approaches. The purpose of this
paper is to (1) compare and contrast several idealized MLS system
architectures that are based on these kernels and (2) provide a
basis for the construction of architectural security metrics.

We examine the classic “Evaluated Policy” (EP) architecture
(e.g., XTS-400 [12], and GEMSOS[39]) based on a security
kernel, the “Multiple Independent Levels of Security” (MILS)
architecture [1][27][48] that is based on a basic separation kernel,
and a new architecture [18] based on a kernel that is fully
compliant with the security features defined in the Separation
Kernel Protection Profile (SKPP): [34] the Least-Privilege (LP)
architecture.

Comparing apples and oranges, such as these three architectures,
requires abstraction of common characteristics. A policy
equivalence class is one of those common characteristics. We
describe a generic MLS environment as including these necessary
functions, the absence of any of which would undermine the
realization of the MLS policy:

 Establishment and isolation of equivalence classes of system
resources – whereby all of the active resources in a given
class are to be provided with the same security policy
privileges

 Rules for how interaction may occur between equivalence
classes – for MLS systems, the rules define a partial order of
flows

 MLS policy enforcement – mechanisms that ensure the rules

 A method for ensuring that the enforcement mechanisms
themselves conform to the rules.

 A mapping between equivalence classes and MLS human-
readable labels – providing a link to National or other policy
for handling of sensitive information.

We describe the enhancement of the basic MLS environment with
functions for controlled relaxation, restriction, and dynamic
modification of the MLS policy. These functions are commonly
required for practical high assurance MLS systems. With
controlled relaxation, high information can be securely
transitioned to low domains, when appropriate. Restrictions to the
strict MLS policy enable the application of the principle of least
privilege (PoLP), as well as certain specialized sub-policies;
whereas dynamic policy modification supports adaptive response
to emergencies and other environmental changes[32][33].

The three architectures differ in their approaches to these
functions, and the differences are used to compare the assurance
that the architectures embody. Additionally, they are compared
with respect to several usability factors: scalability, reusability of
components, and performance. While each architecture has
advantages, in summary, our analysis shows that the Least
Privilege and Evaluated Policy architectures provide better
assurance.

Copyright 2007 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
CSAW’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-890-9/07/0011...$5.00.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Analysis of Three Multilevel Security Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School ,Center for Information Systems Security
Studies and Research (NPS CISR),1411 Cunningham Rd
,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the Computer Security Architecture Workshop, ACM. November 2, 2007, Fairfax, VA, pp.
37-46

14. ABSTRACT
Various system architectures have been proposed for high assurance enforcement of multilevel security.
This paper provides an analysis of the relative merits of three architectural types ? one based on a security
kernel, another based on a traditional separation kernel, and a third based on a least-privilege separation
kernel. We introduce the Least Privilege architecture, which incorporates security features from the recent
?Separation Kernel Protection Profile,? and show how it can provide several unique aspects of security and
assurance, although each architecture has advantages.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. BACKGROUND
To establish the context for the comparative analysis that follows,
several underlying security policy concepts are described.

2.1 Security Policies
We regard mandatory access control (MAC) policies as those that
regulate all users’ access to information based on the sensitivity
level of the information and the authorization (“session”) level of
the individual user. The policies are mandatory because their
enforcement is intended to be both global in scope and persistent
in time, such that individual users cannot override the policy
during normal use. Often, this amounts to ensuring that the user
and his/her surrogate programs are constrained to create or
interact with information that is at the same sensitivity level as the
user’s session.

Historically, The primary security policy of interest has been that
regarding the handling of sensitive documents with hierarchical
confidentiality labels such as TOP SECRET (TS), SECRET (S),
and UNCLASSIFIED (U). However, MAC policies are also used
for managing information based on integrity labels, as well as
non-hierarchical labels such as would identify an area of interest
which must be kept separate within a hierarchical level, like a
defense capability program (e.g., TS CRYPTO), or finance
processing. Research has shown that MAC policies have a label
space that forms a lattice with respect to the reads and writes (i.e.,
information flows) that are allowed [9].

A secure computer system protects the security mechanisms’
internal code and data and hardware resources. Such a system
provides a translation of organizational security policies [46] by
way of automated mechanisms that control the system’s
resources: the automated security policy. The controlled
resources include the security mechanisms’ internal code and
data, as well as the exported resource abstractions of the system
(e.g., processor time, files, devices, processes). This description
assumes that inter-process communication mechanisms (e.g.,
pipes) can be sufficiently modeled, for the purpose of security
analysis, as objects that are read from and written to.

Subjects are the active entities of a system (e.g., processes, or
programs in execution) and may act as surrogates for users (e.g.,
administrators or ordinary users), or may be independent system
“daemons.” Note that “exported resources,” as used here,
subsumes both subjects and objects. To implement a MAC
policy, each exported resource is associated, explicitly or
implicitly, with a sensitivity level. The policy enforcement
mechanisms then ensure that the only accesses allowed in the
system are those in which the interactions between levels are
consistent with the MAC policy.

Multilevel security (MLS) policies are those MAC policies in
which subjects may have access to objects in parts of the lattice
that: (1) can be different than that of their related user session
level, and (2) are allowed by normal “paper world” information
handling policies. In other words, subjects are not constrained to
interact with objects at their own level. They may read “down”
and write “up” with respect to the confidentiality lattice, as well as
read objects of greater integrity and write to objects of lesser
integrity. These operations are consistent with the Bell and
LaPadula [4] and Biba [7] models. Note that in this document,
“read” (as in “subject reads object”) indicates a simple
observation whereby information flows from the object to the
subject; whereas “write” indicates modification, whereby

information flows from the subject to the object. This semantics
for write, sometimes called a “blind write,” does not imply read.
Mechanical problems of implementing “blind writes” are left to
the system engineers.

2.2 Trusted Subjects
Useful MLS systems must include various functions for two-way
interaction between levels. These multi-level functions can be
modeled by trusted subjects that have a label range spanning
multiple nodes of the lattice.[47][10][20][40] It is a significant
distinction that trusted subjects do not violate the security policy:
rather their defined behavior is an explicit part of the security
policy, as follows. The set of flows allowed by the system MLS
security policy is the union of: (a) the flows allowed by the strict
MLS policy; and (b) the set of flows defined to be allowed for the
system’s trusted subjects (here, called the relaxed MLS policy).
As a result, the “incorrect or malicious execution [of a trusted
subject] is capable of violating the system security policy.”[31]

Trusted subjects are relied upon to conform to the relaxed MLS
policies, if not help enforce the strict MLS policy. For example,
consider a down-grader or guard, which is a TS trusted subject
that can read and write data at both TS and S; specifically, it can
“write down” from TS to S. This program needs to be carefully
engineered so that only the intended information is written down,
and it is written only to the intended objects.

2.3 The Principle of Least Privilege
In their 1975 review, Saltzer and Schroeder [38] identified least
privilege as the restriction that “every program and every user of
the system should operate using the least set of privileges
necessary to complete the job.” Primarily, this principle limits the
damage that can result from an accident or error. It also reduces
the number of potential interactions among privileged programs to
the minimum for correct operation, so that unintentional,
unwanted, or improper uses of privilege are less likely to occur.
As applied to internal mechanisms of a secure system, the
principle of least privilege also helps to minimize and clarify the
design. Least privilege mechanisms supported by operating
systems include access control lists or capabilities relative to
individual users and objects, and privilege rings (i.e., hardware-
enforced hierarchical privilege domains).

The principle of least privilege provides a clear foundation for
understanding why a system should not be configured to allow
unfettered access to resources, such as results from the use of
“super-user” or “root” programs in a Unix-like system [45]. To
arrive at a securely deployed system, it must be capable of
supporting least privilege, and it must have been administratively
configured such that the programs that might execute will be
accorded “the least set of privileges necessary to complete the
job.” If a system does not allow individual users and programs to
be so configured, the accountability mechanisms (e.g., audit) will
be less able to accurately discern the source of various actions,
e.g., individual modifications within a file. Thus, the ability of a
secure system to realize the goals of accountability, as well as the
confinement of damage, is limited by the level of granularity with
which the system is able to invoke the principle of least privilege
[22]. The ideal from a security perspective is that a system should
be able to apply least privilege at the same granularity as the
resources that it exports (e.g., individual files).

3. KERNELS
A system security architecture of enough functionality to be of
interest has layers of functions, services, and interfaces. At the
center of the architectures examined here is a small kernel, which
is simple and minimized.[49] The kernel manages hardware
resources, from which it creates, exports and protects abstractions
(e.g., subjects/processes and memory objects) and related
operations. The desired security characteristics of a high
assurance kernel are those of a reference monitor:[3] always
invoked, tamperproof, and “small enough to be subjected to
analysis and tests, the completeness of which can be assured.”
If the kernel is always invoked, scurrilous processes cannot
bypass its protection mechanisms to access resources. If the
kernel is tamperproof, the protection mechanisms cannot be
modified to perform falsely when they are invoked. Complete and
consistent mediation of access results. In order to be “completely
analyzable,” a corollary to smallness is that the design must also
be simple, as well as minimized to contain only the necessary
functionality [11].

3.1 Security Kernel
A security kernel binds internal sensitivity labels to exported
resources, and mediates access by subjects to other resources
according to a partial ordering of the labels defined in an internal
policy module.[2] The label space may support confidentiality and
integrity policies as well as non-hierarchical categories,[26] A
security kernel usually provides a hardware-supported ring
abstraction [43][44] and can host trusted subjects. [39] The rings
can separate applications within a process. Thus, a subject is a
process-ring pair. All high assurance security kernels to date have
utilized segmented memory, which provides persistent hardware
based process-local memory-protection attributes [12] [13] [39]
[41] as opposed to dynamic, global, hardware attributes based on
memory paging mechanisms.

The security kernel mediates external communication via network
devices that are each dedicated to a given sensitivity level, or via
multilevel devices, in which a sensitivity label is bound to each
network protocol entity (e.g., datagram). Security kernels
generally support full resource and resource-allocation
configurability during runtime.

3.2 Separation Kernel
A separation kernel [36] maps the set of exported resources into
partitions1: resource_map: resource → partition.
There may be multiple “subject” resources and multiple “object”
resources within a given partition, but a partition is not itself a
subject. Resources in a given partition are treated equivalently
with respect to the inter-partition flow policy, and specifically,
subjects in one partition can be allowed to access resources in
another partition.
Separation kernels enforce the separation of partitions, and allow
(subjects in those) partitions to cause flows, each of which, when

1 A mathematical Partition of a set, S, divides S into subsets,

called blocks, such that each element of S belong to exactly one
block and the blocks do not overlap. Blocks form equivalence
classes of S with respect to the elemental equivalence relation
“in the same block as.”[35] In separation kernel and MILS
literature, blocks are called “partitions,” and we will use that
terminology here.

projected to partition space (per the resource_map function),
comprises a flow between partitions (which may be between
different or identical partitions). The allowed inter-partition flows
can be modeled as a “partition flow matrix” whose entries indicate
the mode of the flow, partition_flow: partition ×
partition → mode. The mode indicates the direction of the
flow, so that partition_flow(P1, P2) = W means that
subjects in P1 are allowed to write to any resource in P2.

The assignment of resources to partitions and the access control or
“flow” rules are passed to the separation kernel in the form of
configuration data that the kernel interprets during system
initialization. Since configuration data correctness is critical for
the enforcement of the intended security policy, a configuration
tool is often described for the construction of flow rules. Although
not part of the kernel itself, this tool can help the security
administrator or system integrator to organize and visualize
complex data. This helps to ensure that user inputs reflect the
intended policy.

Another term for a separation kernel is a partitioning kernel
(PK)[25], and we will use that in the remainder of this document
to distinguish the basic separation kernel from the least privilege
separation kernel, discussed next.

3.3 Least Privilege Separation Kernel
Least privilege separation kernels (LPSKs) extend the PK concept
to support the greater privilege granularity described in the NSA
Separation Kernel Protection Profile (SKPP) [34]. The LPSK also
generalizes the PK’s reference monitor aspect to be the locus of
control for all inter-partition flows. In addition to the
resource_map and partition_flow functions of a PK, an
LPSK supports the principle of least privilege in a manner than
can be represented as a “subject-resource” flow matrix,
subj_res_flow: subject × resource → mode. The
SKPP allows the subject-resource flow matrix to override the
rules of the partition flow matrix, however we prefer a more
restrictive interpretation where a given flow is allowed by the
LPSK only if both matrixes allow it: [34][21]

allow_flow(subject, resource, mode) →
mode ∈ subj_res_flow(subject, resource)
&
mode ∈ partition_flow(subject.partition,

 resource.partition)

While the allowed partition and subject-resource flows can be
unstructured and arbitrarily complex, the SKPP requires that (1)
each secure configuration include an identification of a “base”
partial ordering of flows between partitions to identify the strict
MLS policy, and (2) subjects allowed to cause flows between
partitions in addition to those base flows are treated as trusted
subjects. Figure 1 shows a system MLS security policy with
circular flows between the partitions (thick arrows) and between
the subject and object resources (thin arrows), and illustrates how
a base partial ordering (the thick, solid arrows) determines which
of the subjects must be trusted. The subject in Partition 3 must be
trusted, since its flow to the object in Partition 1, a thin dashed
arrow, is not consistent with the base flows (the projection of this
flow in partition space is represented by the thick dashed arrow).

The SKPP defines various degrees of runtime configuration
change, as a means for altering the TOE security policy, although
it does not provide advice or detailed requirements for how a

vendor should provide evidence of the “continuity of secure state
during the course of dynamic configuration changes.”

4. SYSTEM ARCHITECTURES
In the class of architectures examined here, the Trusted
Computing Base (TCB) includes a kernel, which is implemented
using a combination of hardware and software mechanisms, and
all applications essential for security policy support. We assume
that such supporting policies, such as authentication and audit, are
correctly provided and focus on how the MLS policy itself is
realized. Thus, the TCB of each MLS architecture comprises a
kernel that is configured to manage resources in a specific way,
and in one case, an application program that is essential to
enforcing the MLS policy.

In addition to the active mediation of subjects’ access to exported
resources, realization of an MLS policy may require passive
design measures, to ensure that information does not flow through
internal resources in violation of the rules (i.e., covert
channels[19][28]). In other words, an enforcement mechanism
[42] cannot include an effective procedure for completely
determining its own consistency [14][29] with respect to the
policy it is enforcing; so passive design techniques or externally
applied methods are required. These techniques can include for
example, physical separation of resources, and design disciplines
that result in temporal or spatial partitioning of internal resources.

Due to their use of minimized kernels, all three architectures
require either a customized operating system or a translation layer
between their respective kernels and any complex, commercial-
grade applications. System application components outside of the
TCB may also translate the TCB-exported resources into new
abstract data types, but the TCB’s policy restrictions will still hold
over those resources. For example, resource management services
such as an ORB or DBMS can be provided, but these kernel-
hosted services would not enforce or support multilevel security
functions, so are not significant to an understanding of the
architectures’ multilevel security issues.

All three architectures can support trusted subjects and can be
configured as a network of similar systems, assuming a common
sensitivity-label lattice in the network. Architectures built upon
separation kernels, be they PK or LPSK, will be referred to as
“PK-based architectures.” In Sections 6, 7, and 8, the three

architectures are compared with respect to security functionality,
assurance, evaluatability and usability

4.1 MILS
The MILS architecture is based on the PK and the use of trusted
subjects to manage inter-level communication. Because MILS
itself is evolving [1][48][27], we summarize our current
understanding of it as follows.

The kernel of the MILS architecture is a real-time PK. MLS
sensitivity labels are assigned to each partition by system-level
applications or system (vice kernel) configuration data.
Hierarchical confidentiality labels comprise the label space. At
least one of the partitions is allowed (via PK configuration data)
to read and write data in all of the other partitions. Enforcement
of inter-partition flow policy is allocated to a trusted subject in
this partition, which is called for example, a Block Access
Controller (BAC),[27] or Partitioning Communication System
(PCS).[1][48] This AC-subject,2 provides the only means by
which other subjects can communicate between local partitions or
between partitions in distinct network nodes. Thus, subjects read
and write information in other partitions by making requests to the
AC-subject. Similar to the PK’s configuration tool, an AC-subject
configuration tool may be used to generate AC-subject
configuration data.

The architecture statically allocates one process per partition
(dynamic changes are described in Section 6). Hardware support
for rings is not provided, so there is one subject per process.
Subject isolation is based on the PK’s partition-separation
mechanism, and the general paradigm for program services is the
use of multiple partitions (vs. multiple subjects in a process). For
example, a database service could be provided by a dedicated
process/partition, where database accesses are accomplished via
inter-partition communication.
Several partitions may be assigned the same confidentiality label:
here we refer to these as sub-partitions, since together, they
comprise an equivalence class with respect to the system MLS
policy. Least privilege can be provided by restricting sub-
partitions, over and above the MLS constraints, through the AC-
subject. We understand that one MILS vendor may be working on
incorporation of a kernel least privilege mechanism in their PK,
but that development has yet to be published. Protection from
covert channels is supported by the static assignment of resources
to a given partition.

4.2 Evaluated Policy
The Evaluated Policy (EP) architecture is based on a security
kernel. The name Evaluated Policy architecture derives from the
fact that the flow policy enforced by the system is validated as
part of product evaluation.
There may be several subjects within the same process (as stated
above) The EP architecture uses each ring to identify a privilege
domain, across all processes. This is done by segregating
programs that have different privileges (e.g., even those with the
same labels or within the same process) into different rings –
creating a privilege-based partitioning of resources that is
orthogonal to the MLS-label based partitioning. Within a process,
more privileged subjects can also be given security labels that

2 We will use this term, since at the time of this writing we could

not find a common name for the component.

Figure 1. Partially Ordered Flows and Trusted-subject

provide more access than the less-privileged subjects (e.g., to
support an MLS service in the most-privileged ring), so a process
can span equivalence classes, which is not possible in the PK-
based architectures, where subjects are labeled homogeneously
within partitions. Hence the “interference” of a trusted subject
can be limited to occur only within its privilege domain, as well as
within its label range. The hardware rings support both an
effective separation mechanism for protecting the privileged
programs, and a secure and efficient mechanism for transitioning
control from one program to the other (e.g., call gates).

The EP architecture uses CPU scheduling and memory allocation
schemes that can dynamically interleave security levels, rather
than allocating those resources statically.

4.3 Least Privilege
Least Privilege (LP) architectures [18] inherit characteristics from
both the MILS and EP architectures, and use an LPSK. Thus, like
MILS, an LP system gets its definition of equivalence classes and
flow policy from its initialization environment, and is run
statically with those definitions (dynamic changes are described in
Section 6). As with the EP architecture, hardware-supported rings
are used to protect privileged applications and to define subjects
of a process; and there may be many subjects within a given
equivalence class.

Unlike the MILS architecture, the LP architecture does not require
an AC-subject to perform its basic functions, but can host trusted
subjects in a multi-level partition, if one is needed for other
purposes. The LP architecture utilizes the partition, least
privilege, and ring mechanisms of LPSK to provide the ability to
securely manage complex processing environments, protecting
and confining privileged applications, while limiting covert
channels through the static allocation of resources.

5. COMPARISON FACTORS
The comparison of system security architectures includes
functionality, assurance, usability and evaluatability factors. As
discussed in the following sections, several architectural
properties are inherited from their respective kernels.

6. FUNCTIONALITY
A high assurance MLS system enforces the MLS policy and may
include capabilities for the relaxation, restriction, and dynamic
modification of that policy. Inherent to the maintenance of a strict
MLS policy is the establishment and isolation of equivalence
classes, rules for interaction between those classes, enforcement
of the rules, design of the enforcement mechanism to conform to
the rules (see Section 7.2), and a mapping between the
equivalence classes and human-readable MLS labels. Incorrect
realization of any of these can subvert the security policy.

6.1 Establishment of Equivalence classes
In all three architectures, the kernel defines equivalence classes
for MLS policy enforcement by associating attributes with
exported resources, and it is axiomatic that the equivalence classes
are provided to the kernel correctly to reflect the organizational
security policy. For PK-based architectures, the binding of
partition attributes to resources is imported via configuration data
during initialization. In EP architectures, the kernel binds
machine-readable security labels to resources as they are created.
In all cases, exemptions to isolation are allowed per the policy
rules.

6.2 Specification of Security Rules
The security rules define the MAC policy. For PK-based
architectures, the rules for interaction across equivalence classes
are defined in the kernel configuration data. In MILS systems,
rules in the AC-subject configuration data restricts the transitivity
of flows allowed by the PK configuration data. The rules can be
configured to result in partially ordered inter-partition flows
(modulo flows caused by trusted subjects).

In EP architectures, the kernel security module specifies rules for
partially ordered interaction across equivalence classes (modulo
flows caused by trusted subjects).

6.3 Locus of Policy Enforcement
In all three architectures, cross-equivalence-class information
flows are enforced based on both the rules and the equivalence-
class attributes associated with resources. In the MILS
architecture, rules are enforced by a combination of the PK and
the AC-subject. In the EP and LP architectures, the kernel
enforces the rules.

6.4 Mapping to Human Readable Labels
None of the kernels of the three architectures require human-
readable labels in their implementation: the mapping from human-
readable labels to the corresponding equivalence classes is
performed outside of the kernel in a manner consistent with
policy.

6.5 Relaxation of Policy
The architectures differ in the ways that relaxation of the strict
MLS policy is achieved. The relaxed MLS policy behavior of
trusted subjects has been called “intransitive noninterference,”[37]
a policy where, for example, a trusted subject may move data
from TS to S, as an intermediary, but “untrusted” TS and S
subjects cannot do so directly. We refer to the constrained
behavior of a trusted subject as controlled interference, to avoid
the double negative. Traditional difficulties in trusted subject
development have been in modeling their correct behavior, as well
as implementing useful constraints to guarantee correct
behavior.[5]

The PK-based architecture configuration data determines which
subjects may interact (both read and write) between security
levels, and are therefore “trusted.” The EP architecture assigns the
individual trusted subject a label range (e.g., U to TS), allowing it
to perform the necessary functions within that range (e.g.,
downgrade).

6.6 Restrictions to Policy
There are several “least privilege” mechanisms for constraining
subjects from unfettered access to resources. EP and LP
architectures, using kernel ring support, can constrain subjects.
For example, a TS subject in ring 2 would be able to access only
TS objects in rings 2 and 3. Although the MILS architecture does
not utilize hardware ring separation, PoLP can be applied by
subdividing a given partition into privilege-specific sub-partitions,
some of which may be allowed less access to resources than the
partition would allow. In the LP architecture, the LPSK’s
subj_res_flow function constrains subjects, with kernel
assurance, to access only specific objects in a partition, thus
supporting least privilege at the same level of granularity as the
resources that the kernel exports – a granularity of control not
possible in a PK or a security kernel.

Another restriction to information flow of interest is that of being
able to control how “far” in the sensitivity-label lattice
information may directly flow. We refer to this property as
“intransitive information flow.” It is different from controlled
interference in that it is a restriction to the strict MLS policy
rather than an extension or relaxation. Intransitive information
flow has several applications; such as to provide integrity control
in systems without explicit integrity labels, when there is a
concern that low confidentiality information might corrupt high
confidentiality subjects. Intransitive information flow can be
achieved in the PK-based architectures by configuring the
partition flow matrix to disallow direct reading of U information
by TS subjects, and direct writing of TS objects by U subjects; but
allow read-down/write-up from (e.g., an integrity filter program
in) a SECRET partition. In the LP architecture, least privilege can
limit the transitive flow associated within the SECRET partition
to a single subject; this can also be achieved in the MILS
architecture by configuring the system to have only one SECRET
subject.

The LPSK kernel can also be configured to strictly prohibit
transitive flow from U to TS. This can be accomplished in the
subject-resource flow matrix by ensuring that the resources in S
(including subjects) that can interact with TS are distinct from
those in S that can interact with U. A similar separation can be
created with the EP architecture through the use of non-
hierarchical categories.

6.7 Dynamic Security Policies
The need for secure systems to respond to changing conditions
[32][33] implies the support for dynamic policies, i.e., where
mandatory access control semantics may be changed or over-
ridden during extraordinary circumstances. The three
architectures address dynamic policy changes in different ways.

The PK-based architectures’ configuration data can include pre-
configured, pre-verified policy “vectors” [34] to enable a runtime
kernel policy change. It is also possible for a MILS system to
support dynamic changes to the AC-subject’s code or
configuration data. For the EP architecture, the system must be
halted, the internal policy module replaced, and the kernel
recompiled and then restarted.

A serious consideration regarding dynamic security policies is
their lack of formal foundations, industry standards, and accepted
National policy. We know of no formal security policy model for
dynamic MLS. It is clear from previous work [16] that ad hoc
changes to an access control policy can prevent the understanding
of the ultimate policy. Of particular concern are the revocation of
access to data that is no longer accessible under a new policy, and
how to “get the genie back in the bottle” after an emergency. If a
given partition or domain has been “polluted” with higher
confidentiality data, cleaning it up may be intractable, short of
drastic action.

7. ASSURANCE
This section summarizes several architectural factors the affect the
assurance of secure systems.

7.1 Persistence of Policy
The primary conceptual difference between EP kernels and
separation kernels is in the nature and persistence of their security
policies. The policy of a security kernel is to control flows in a
lattice. In contrast, the policy of a PK is to enforce the policy that

is input to it: a second order effect. An EP system’s policy is
determined at kernel compile time, whereas SK systems enforce
(or interpret, in compiler terminology) a policy that is determined
at boot time, through configuration data. As a consequence, the
security policy of an EP system is verified when it (including the
security kernel) is evaluated, but the policy of the PK-based
system can only be verified after the construction of the
configuration data and the integration of the data with the system.
The lack of persistence of a security policy in PK-based
architectures implies that there is inherently less assurance of its
enforcement, compared to EP systems.

7.2 Design to Avoid Covert Channels
The design of the TCB to avoid covert channels, and the analysis
to demonstrate their absence, is essential for all MLS systems.
These activities are more difficult with EP architectures (than with
PK-based architectures) due to their use of dynamic runtime
resource allocation.

The LP architecture is less problematic for covert channels than
the MILS architecture, since in the latter the analysis must extend
to the AC-subject.

7.3 Structural Abstractions
The architectures differ in the abstractions available to support
development. The “second-order” policy of PK-based
architectures is not as concrete as the EP architecture’s MLS
model. Also, the MILS architecture lacks an overarching
abstraction like rings for organizing program integrity and
privilege[43]: those considerations must be handled in an ad hoc
fashion via restrictions defined in AC-subject configuration data.
As a result, it is more likely that the intended MLS policy can be
undermined in a MILS- or LP-based system through programmer
and verifier confusion (e.g., in constructing either the AC-subject
or the configuration tool).

7.4 Reliance on Trusted Subjects
Reliance on trusted subjects is an architectural weakness for
several reasons, including the problem that they require analysis
and demonstration of functional correctness over and above what
is required for the basic MLS security model. A principle for the
use of trusted subjects is to minimize their range of trust.[30][6]
Unfortunately, the AC-subject requires a range over all partitions,
so it is a single point of failure. That the fundamental MLS policy
functions of MLS enforcement and mediation of relaxed MLS
policy are performed in a trusted subject complicates this
situation. However, it is clear that the addition of kernel-enforced
constraints to trusted subject behavior reduces the amount of
“blind faith” (viz., trust) that the users must have in them, and
commensurately increases the assurance in the system compared
to one without such constraints. The increased granularity with
which the LP architecture can apply constraints on trusted
subjects provides is an assurance advantage in this regard.

7.5 Verification of Configuration Data
Verification of configuration data in PK-based architectures is a
significant concern, as this data determines the system’s security
policy. The verification will likely be supported by the presence
of evaluated configuration tools.. The need for validation of each
change to configuration data may result in lesser assurance than
that provided by the evaluation of EP architecture systems, whose
rules are verified once during the evaluation of each security
kernel.

We do not yet have standards or accepted practices regarding PK
policy and AC-subject configuration tools, such as for the
properties they are supposed enforce and the criteria[8] for their
robust construction. Until these standards and practices are
established, the tools themselves can be a source for weakening
the assurance of PK-based architectures.

8. EVALUATABILITY AND USABILITY
To ensure system trustworthiness, all of the mechanisms
providing the basic security functions in a high assurance system
need to be carefully assessed (i.e., evaluated).Security evaluation
is an expensive, time-consuming effort that requires highly skilled
personnel, so architectural factors that ease or get in the way of
evaluation of a system are of interest. Also, performance,
scalability and re-usability can help to determine the suitability of
a security architecture for a particular use and are briefly
summarized here.

8.1 TCB Code and Data
The assessment effort of a TCB module is roughly the same
whether it is in the kernel or in a trusted subject. So for a given
architecture, you “pay now” with kernel analysis or “pay later”
with AC-subject analysis. Additionally, the evaluation of the
configuration data for PK-based kernels, and AC-subjects for
MILS architectures, will require extra effort, as, for each separate
configuration, an evaluator, accreditor or other analyst must
examine the rules for interactions between partitions. Frequent re-
evaluation of configuration data changes, or evaluation of
configuration data in the field, may be problematic.

8.2 Configuration Tools
 Relative to EP architectures, which do not require configuration
tools, the evaluation of MILS and LP configuration tools will
require additional time and expense. Additionally, standard
methods for the assessment of configuration tools do not yet exist,
so the evaluations will be more expensive, initially.

8.3 Factoring and Reusability
The PK offers a “policy neutral” reference validation mechanism,
which can be reused in a conceivably broader range of systems
than a security kernel. The LP architecture also provides a policy-
neutral kernel, with the advantage of enforcing the MLS policy in
the kernel. However, inasmuch as the purpose of the MILS
architecture is MLS policy enforcement, there seems to be little
reusability advantage in moving the MLS policy enforcement
function out of the kernel, as it is necessary to duplicate that
functionality in every MILS system.

8.4 Scalability
PK-based architectures must provide a separate partition (or set of
sub-partitions) for each supported MAC label upon initialization.
Worse still, MILS systems, with single-process partitions, must
initialize a partition for each application that may ever need to
run. Since scheduling and memory allocation are static, all
applications are scheduled and fully occupy memory even when
they are not being used. This resulting pre-configuration of
partitions would not be scalable to highly diverse security
environments.[24] In contrast, LP architectures with multiple
applications per partition can dynamically schedule those
applications within the partition’s time slice and memory domain.
EP architectures are more dynamic still, creating new processes
on the fly, and easily support a large number of different levels

without requiring all applications and resources to be initialized at
boot time.

8.5 Performance
We provide a few observations, but do not yet have in depth
analysis. The overhead of a context switch is generally inversely
proportional to the amount of context attributes to be managed.
Thus, changing contexts within a process (i.e., between subjects
or between a subject/process and the kernel) is faster than
changing processes. The MILS services and program interactions
are achieved through the use of separate processes. For example,
inter-partition communication involves switches between three
partitions: the source, the AC-subject, and the destination; the
result is that the AC-subject creates a star network among
partitions. The EP and LP architectures use multiple subjects
within a process, and perform access control via a subject/kernel
interaction, which would generally be more efficient than the
MILS task-switching approach, all other things being equal.

To avoid covert timing channels, all MLS architectures must
maintain a consistent allocation of time to each equivalence class,
so interrupt-driven interactions with the MILS AC-subject would
be constrained to be serviced within the MLS-aware scheduling
sequence, which could adversely affect performance (of course
some optimization is possible, via ordered scheduling, [17] etc.).
On the other hand, MILS requires its PK to be “real time,” to
some definition, which may help to mitigate this problem.

9. SUMMARY AND FUTURE WORK
Three MLS security architectures were analyzed: MILS,
Evaluated Policy, and Least Privilege. The EP and LP approaches
appear to have an overall advantage over MILs with respect to the
factors addressed. However, it is likely that some of these factors
would be more important than others, depending on the context in
which a particular architecture might be applied, which could
result in a different overall ranking. Table 1 summarizes how the
three architectures differ.

Further research is needed to better quantify and create metrics for
these architectural differences.[23] For example, we have no data
at this point regarding how the architectures differ in their
performance or prevention of covert channels.

The flow-matrix model discussed in Section 3 might be shown to
represent a noninterference property[15] if the “subject-resource”
flow matrix were extended to include internal resources,[21] thus
representing all state in the system. We are working on analysis
of the security properties of that extension.

10. ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0430566 with support
from DARPA ATO, and by the Office of Naval Research. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation,
of DARPA ATO, or of the Office of Naval Research. We thank
Rance Delong for his helpful comments and suggestions regarding
a previous draft of this document.

Table 1. Summary of MLS Security Architecture Differences

Factors MILS Evaluated Policy Least Privilege
Functional

Specification of rules Configuration data Hard-coded in kernel Configuration data
Locus of MLS enforcement Kernel and trusted subject Kernel Kernel

Relaxation of MLS policy Configuration data Assign subject a label range Configuration data
Restrictions to MLS policy Sub-partitions Rings Rings and subject-resource

flow matrix
Dynamic MLS policies Runtime Reconfiguration None Runtime Reconfiguration

Assurance
Persistence of MLS policy Dynamic with each boot Static once kernel is compiled Dynamic with each boot

Design to avoid covert channels Static resource allocation leads
to simpler design

Dynamic resource allocation
requires greater care in design

Static resource allocation
leads to simpler design

Structural Abstractions Partition separation Process separation, rings and
static policy

Partition separation and rings

Constraints on trusted subjects Partition-flow matrix Kernel-enforced label
restrictions

Subject-resource and
partition-flow matrices

Verification of configuration data Requires post-evaluation use of
non-kernel tools

Not needed Requires post-evaluation use
of non-kernel tools

Evaluatability & Usability
TCB Code and Data Requires evaluation of kernel

and AC-subject configuration
data

Does not require evaluation of
configuration data

Requires evaluation of kernel
configuration data

Configuration Tools Requires evaluation of kernel
and AC-subject configuration
tools

Does not require evaluation of
configuration tools

Requires evaluation of kernel
configuration tool

Factoring and reusability Policy modifiable via
reconfiguration (AC subject
required)

Single policy kernel Policy modifiable via
reconfiguration

Scaleable process support Statically defined by
configuration

Dynamic instantiation of
processes

Statically defined by
configuration

Scalable label spaces Label space proportional to
total system resources

Large label space possible Label space proportional to
total system resources

Performance Process context switches
required for routing of data and
services - slower

Some services and data available
through ring crossing – generally
faster

Some services and data
available through ring
crossing - generally faster

11. REFERENCES
[1] J. Alves-Foss, C. Taylor, and P. Oman. A Multi-layered

Approach to Security in High Assurance Systems. Proc. 37th
Hawaii International Conference on System Sciences. 2004

[2] S. H. Ames, M. Gasser, and R. R. Schell. “Security kernel
design and implementation: An introduction.” IEEE
Computer, vol. 16, no. 7, pp. 14–22. 1983.

[3] J. P. Anderson. Computer Security Technology Planning
Study, ESD-TR-73-51, vol. I, ESD/AFSC, Hanscom AFB,
Bedford, Mass., October 1972 (NTIS AD-758 206)

[4] D. Bell and L. La Padula. Secure Computer Systems: Unified
Exposition and Multics Interpretation. MITRE Corp.
Technical Report MTR-2997. July 1975. URL:
http://csrc.nist.gov/publications/history/bell76.pdf

[5] T. Benzel and D. Tavilla. “Trusted software verification: A
case study.” In Proceedings of the Symposium on Security
and Privacy. pages 14–31, Oakland, CA, April 1985. IEEE
Computer Society.

[6] T. V. Benzel, C. E. Irvine, T. E. Levin, G. Bhaskara, T. D.
Nguyen, and P. C. Clark. Design Principles for Security.
NPS-CS-05-010, Naval Postgraduate School, September
2005.

[7] Biba, K. J., Integrity Considerations for Secure Computer
Systems. ESD-TR-76-372, April 1977. Electronic System
Division, Air Force Systems Command, Hanscom AFB,
Bedford, MA.

[8] Common Criteria Project Sponsoring Organizations.
Common Criteria for Information Technology Security
Evaluation. Version 3.0, CCIMB-2005-06-[001, 002, 003],
June 2005.

[9] Denning, D. A Lattice Model of Secure Information Flow,
Comm. ACM., Vol 19, No. 5, pp. 236-243, 1976.

[10] D. Denning, T. F. Lunt, R. R. Schell, M. Heckman, and W.
Shockley. “A multilevel relational data model,” Proc. 1987
IEEE Symposium on Security and Privacy, pp. 220–234,
1987.

[11] Department of Defense Trusted Computer System Evaluation
Criteria. DOD 5200.28-STD, December 1985, Washington,
DC. URL: http://csrc.nist.gov/publications/history/dod85.pdf

[12] DigitalNet Government Solutions. Security Target Version
1.7 for XTS-6.0.E. March 2004.

[13] L. Fraim, SCOMP: A Solution to the Multilevel Security
Problem, IEEE Computer, Vol 16, No. 7, 1983.

[14] K. Gödel. “Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme,” Monatshefte für
Mathematik und Physik. Vol. 38 pp 173–198, 1931

[15] J. Goguen and J. Meseguer. “Security Policies and Security
Models,” Proc. IEEE Computer Society Symposium on
Research in Security and Privacy, pp 11–20, 1982.

[16] M. Harrison, M. Ruzzo, J. Ullman. “Protection in Operating
Systems,” in Communications of the ACM, v 19 no 8 (Aug
1976), pp 461–471.

[17] W. Hu, “Lattice scheduling and covert channels.” Proc. IEEE
Computer Society Symposium on Research in Security and
Privacy, 4-6 May, 1992. Pp. 52-61.

[18] C. E. Irvine. Collaborative Research: SecureCore for
Trustworthy Commodity Computing and Communications.
31 Mar. 2005.
https://www.fastlane.nsf.gov/servlet/showaward?award=043
0566

[19] B. Lampson, “A Note on the Confinement Problem,” Comm
ACM, Vol. 16, No. 10, pp. 613–615, 1972.

[20] J. Landauer, T. Redmond, and T. Benzel. “Formal policies
for trusted processes,” in Proc. Computer Security
Foundations Workshop II, (Franconia, NH), pp. 31–40, June
1989.

[21] T. E. Levin, C. E. Irvine, and T. D. Nguyen. A Least
Privilege Model for Static Separation Kernels, NPS-CS-05-
003, Naval Postgraduate School, October 2004

[22] T. E. Levin, C. E. Irvine, and T. D. Nguyen. Least Privilege
in Separation Kernels, Proc. International Conference on
Security and Cryptography, Setúbal, Portugal, August 2006,
pp. 355-362. URL:
http://cisr.nps.edu/downloads/06report_mps.pdf

[23] T. E. Levin, C. E. Irvine, and T. D. Nguyen. An Analysis of
Three Kernel-based Multilevel Security Architectures, NPS
Technical Report NPS-CS-06-001, August 2006.

[24] S. B. Lipner, “Non-discretionary controls for commercial
applications,” Proc. IEEE Symposium on Security and
Privacy, (Oakland), pp. 2–20, IEEE Computer Society Press,
1982.

[25] Lockheed-Martin/The Open Group. Protection Profile for
PKs in Environments Requiring High Robustness, Draft
Version 1.3, submittal for NSA approval, 09 Jun 2003.
http://www.csds.uidaho.edu/pp/PKPP1_3.pdf. Last Accessed
6/6/07.

[26] T. F. Lunt, P. G. Neumann, D. E. Denning, R. R. Schell, M.
Heckman, and W. R. Shockley. “Secure distributed data
views security policy and interpretation for DMBS for a
Class A1 DBMS,” Tech. Rep. RADC-TR-89-313, Vol I,
Rome Air Development Center, Griffiss, Air Force Base,
NY, December 1989.

[27] D. McNamee , Scott Heller , Dave Huff. “Building
Multilevel Secure Web Services-Based Components for the
Global Information Grid.” CrossTalk, Vol. 19, No. 5, pp.
15–19. May 2006.

[28] J. Millen. Covert Channel Capacity, Proc. IEEE Symposium
on Research in Security and Privacy, Oakland, CA, pp. 60-
66, April 1987.

[29] D. Myers. Gödel's Incompleteness Theorem.
http://www.math.hawaii.edu/~dale/godel/godel.html, last
accessed Feb 2, 2007

[30] P. G. Neumann. Principled Assuredly Trustworthy
Composable Architectures. Final Report, DARPA Order No.
M132. SRI International Menlo Park, California, December
2004. URL: http://www.csl.sri.com/neumann/chats4.pdf

[31] National Computer Security Center. Glossary of Computer
Security Terms. NCSC-TG-004-88. 21 October 1988.

[32] National Security Agency. (U) Global Information Grid
Information Assurance Capability/Technology Roadmap,
Version 1.0 (Final Draft), October 2004.

[33] National Security Agency. Global Information Grid.
http://www.nsa.gov/ia/industry/gig.cfm?MenuID=10.3.2.2.
Last Accessed June 2006.

[34] National Security Agency. U.S. Government Protection
Profile for Separation Kernels in Environments Requiring
High Robustness, Version 1.03, 29 June 2007. URL:

[35] F. P . Preparata, and R. T. Yeh. Introduction to Discrete
Structures for Computer Science and Engineering, Addison
Wesley, Reading, MA, 1973.

[36] J. Rushby. Design and Verification of Secure Systems, ACM
Operating Systems Review, Vol.15, No.5. December 1981

[37] J. Rushby. Noninterference, Transitivity, and Channel-
Control Security Policies. Technical Report CSL-92-02, SRI
International, Menlo Park, CA, 1992. URL:
http://www.csl.sri.com/papers/csl-92-2/

[38] J. H. Saltzer, and Schroeder, M. D. The Protection of
Information in Operating Systems, Proc. IEEE, Vol. 63, No.
9: 1278-1308, 1975.

[39] R. Schell, T. Tao, and M. Heckman. “Designing the
GEMSOS Security Kernel for Security and Performance”,
Proc. 8th National Computer Security Conference,
September 1985, pp.108.

[40] G. Schellhorn, W Reif, A. Schairer, P. Karger, V. Austel, and
D. Toll. Verification of a Formal Security Model for
Multiapplicative Smart Cards. in 6th European Symposium
on Research in Computer Security (ESORICS 2000). 4-6
October 2000, Toulouse, France. Lecture Notes in Computer
Science Vol. 1895. Springer-Verlag. p. 17-36.

[41] D. D. Schnackenberg. “Development of a Multilevel Secure
Local Area Network,” Proc. 8th National Computer Security
Conference, October 1985, pp. 97 - 101.

[42] F. Schneider. “Enforceable Security Policies.” ACM
Transactions on Information and System Security, Vol. 3,
No. 1, February 2000. pp. 30–50.

[43] M. D. Schroeder and J. H. Saltzer, “A hardware architecture
for implementing protection rings,” Comm. A.C.M., vol. 15,
no. 3, pp. 157–170, 1972.

[44] L. J. Shirley and R. Schell. "Mechanism Sufficiency
Validation by Assignment," Proc. IEEE Symp. Security and
Privacy, Apr. 1981, pp. 26-32.

[45] O. Sibert et. al, Unix and B2: Are the Compatible?, Proc. 10th
National Computer Security Conference, National Bereau of
Standards/National Computer Security Center, September
1987, Baltimore, MD, pp. 142-149.

[46] D. Sterne. On the buzz word ‘Security Policy.’ Proc. IEEE
Symposium Research on Security and Privacy, Oakland,
California, May 1991, pp. 219-230.

[47] M.F. Thompson, R.R. Schell, A. Tao, and T. Levin.
Introduction to the Gemini Trusted Network Processor. Proc.
13th National Computer Security Conference, pp. 211-217,
Baltimore, 1987.

[48] W. M. Vanfleet, R. W. Beckwith, B. Calloni, J. A. Luke, C.
Taylor, and G. Uchenick. “MILS: Architecture for high
assurance embedded computing,” CrossTalk, 18, pp. 12–16,
August 2005.

[49] C. Weissman. “Security Controls in the ADEPT-50 Time
Sharing System.” Proceedings of the 1969 AFIPS Fall Joint
Computer Conference, pp 119-135. AFIPS Press, 1969.

